A perturbation method for dark solitons based on a complete set of the squared Jost solutions

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 391979
(http://iopscience.iop.org/0305-4470/39/8/C01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 03/06/2010 at 05:01

Please note that terms and conditions apply.

Corrigendum

A perturbation method for dark solitons based on a complete set of the squared Jost solutions

Sheng-Mei Ao 2005 J. Phys. A: Math. Gen. 38 2399-2413
I would like to express my thanks to Chen et al for drawing my attention to their work (J. Phys. A: Math. Gen. 31 6929). In my own paper I attempted to correct Chen et al's work. I would like to apologize to them as in my paper I reproduced the background knowledge from sections 2 and 3 of their paper. I understand that this is unacceptable and I apologize to Chen and his co-workers. My original intention was for the readers to be able to compare the two papers easily.

In this corrigendum I would like to clarify the main differences between the two papers. Chen et al used only one squared Jost function $\Phi(z, \zeta)$ in their basis of perturbation expansion, while we used two squared Jost functions $\Phi(z, \zeta)$ and $\Psi(z, \zeta)$ to construct a complete basis. This results in different discrete spectra eigenfunctions, different expansion coefficients and so on. In particular our physical results (for example the soliton velocity and the first-order correction) are quite different from those in Chen et al's paper.

A list of key differences between my paper and Chen et al's paper are given along with some recent corrections (the results with the superscript symbol $(-)$ correspond to those of Chen's paper):

Different bases:

$$
B^{(-)}=\left\{\Phi(z, \zeta), \Phi_{0}(z), \Phi_{1}^{(-)}(z)\right\}, \quad B=\left\{\Phi(z, \zeta), \Psi(z, \zeta), \Phi_{0}(z), \Phi_{1}(z)\right\}
$$

Different discrete spectra eigenfunctions:

$$
\begin{aligned}
& \Phi_{1}^{(-)}(z)=\frac{\mathrm{i}}{2}\binom{\left\{-\lambda_{1}\left(\theta_{1}-\frac{1}{2}\right) \operatorname{sech}^{2} \theta_{1}-\zeta_{1} \tanh \theta_{1}-\zeta_{1}\right\} e^{-\mathrm{i} \beta_{1}}}{\left\{\lambda_{1}\left(\theta_{1}-\frac{1}{2}\right) \operatorname{sech}^{2} \theta_{1}+\bar{\zeta}_{1} \tanh \theta_{1}+\bar{\zeta}_{1}\right\} e^{\mathrm{i} \beta_{1}}}, \\
& \Phi_{1}(z)=\frac{1}{2}\binom{\left\{-\mathrm{i} \lambda_{1} \theta_{1} \operatorname{sech}^{2} \theta_{1}-\mathrm{i} \lambda_{1} \tanh \theta_{1}+k_{1}\right\} e^{-\mathrm{i} \beta_{1}}}{\left\{\mathrm{i} \lambda_{1} \theta_{1} \operatorname{sech}^{2} \theta_{1}+\mathrm{i} \lambda_{1} \tanh \theta_{1}+k_{1}\right\} e^{\mathrm{i} \beta_{1}}} .
\end{aligned}
$$

Different first-order corrections:
$\mathbf{q}^{(-)}\left(z, t_{0}\right)=\int_{-\infty}^{\infty} G^{(-)}\left(z, z^{\prime} ; t_{0}\right) \mathbf{R}\left(z^{\prime}\right) \mathrm{d} z^{\prime}, \quad \mathbf{q}\left(z, t_{0}\right)=\int_{-\infty}^{\infty} G\left(z, z^{\prime} ; t_{0}\right) \mathbf{R}\left(z^{\prime}\right) \mathrm{d} z^{\prime}$,
in which $G^{(-)}$and G are Green's functions defined as

$$
\begin{aligned}
G^{(-)}\left(z, z^{\prime} ; t_{0}\right) & =\int_{C} \frac{\left(\mathrm{e}^{\mathrm{i} 4 \kappa\left(\lambda-\lambda_{1}\right) t_{0}}-1\right) \Phi(z, \zeta) \Phi\left(z^{\prime}, \zeta\right)^{A}}{8 \pi \kappa\left(\lambda-\lambda_{1}\right) a(\zeta)^{2}\left(1-\rho^{2} \zeta^{-2}\right)} \mathrm{d} \zeta \\
G\left(z, z^{\prime} ; t_{0}\right) & =\int_{C} \frac{\left(\mathrm{e}^{-\mathrm{i} 4 \kappa\left(\lambda-\lambda_{1}\right) t_{0}}-1\right) \Psi(z, \zeta) \Psi\left(z^{\prime}, \zeta\right)^{A}}{16 \pi \kappa\left(\lambda-\lambda_{1}\right) a(\zeta)^{2}\left(1-\rho^{2} \zeta^{-2}\right)} \mathrm{d} \zeta \\
& +\int_{C} \frac{\left(\mathrm{e}^{\mathrm{i} 4 \kappa\left(\lambda-\lambda_{1}\right) t_{0}}-1\right) \Phi(z, \zeta) \Phi\left(z^{\prime}, \zeta\right)^{A}}{16 \pi \kappa\left(\lambda-\lambda_{1}\right) a(\zeta)^{2}\left(1-\rho^{2} \zeta^{-2}\right)} \mathrm{d} \zeta
\end{aligned}
$$

Different evolution equations of soliton parameters:

$$
\begin{aligned}
(2 \mathcal{L}-1) \rho \rho_{t_{1}}+ & \lambda_{1} k_{1} \beta_{1 t_{1}}+2 k_{1}^{3} \xi_{t_{1}}^{(-)} \\
& =\int_{-\infty}^{\infty} k_{1}\left(1-\tanh \theta_{1}\right) \operatorname{Re}\left(r[u] \mathrm{e}^{\mathrm{i} \beta_{1}}\right) \mathrm{d} \theta_{1} \\
& -\int_{-\infty}^{\infty} \lambda_{1}\left(\theta_{1} \operatorname{sech}^{2} \theta_{1}+\frac{1}{2} \operatorname{sech}^{2} \theta_{1}+\tanh \theta_{1}-1\right) \operatorname{Im}\left(r[u] \mathrm{e}^{\mathrm{i} \beta_{1}}\right) \mathrm{d} \theta_{1}, \\
\lambda_{1} k_{1} \beta_{1 t_{1}}+2 k_{1}^{3} \xi_{t_{1}} & =\int_{-\infty}^{\infty} k_{1} \operatorname{Re}\left(r[u] \mathrm{e}^{\mathrm{i} \beta_{1}}\right) \mathrm{d} \theta_{1}-\int_{-\infty}^{\infty} \lambda_{1}\left(\theta_{1} \operatorname{sech}^{2} \theta_{1}+\tanh \theta_{1}\right) \operatorname{Im}\left(r[u] \mathrm{e}^{\mathrm{i} \beta_{1}}\right) \mathrm{d} \theta_{1}
\end{aligned}
$$

which determine the different corrections of soliton velocity $\left(\xi_{t_{1}}^{(-)}\right.$or $\left.\xi_{t_{1}}\right)$.
I would also like to say that I was unaware of the second paper in which the completeness of Chen et al's expansion basis was proven (J. Phys. A: Math. Gen. 32 2399) by a different method from ours by Huang et al until after our paper had been published. After being made aware of it I thoroughly checked our paper once again. Apart from some small calculated errors, our discussion was correct and our modified results still differ from Huang et al's paper. I began to wonder why there was more than one physical result for the same problem and therefore carried out a further study to investigate this. I have proved mathematically that the different physical results obtained from starting from different bases are essentially equivalent.

I would like to acknowledge Huang et al for their second paper. It has encouraged me to carry out further research to understand the problem.

Finally, I would like to apologize for any offence I may have caused to Professor N N Huang, Dr X-J Chen and Dr Z-D Chen.

